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The interplay between inertia and elasticity is examined in this study for the transient
axisymmetric flow of a thin film. The fluid is assumed to emerge from an annulus,
as it is driven by axial pressure gradient and/or gravity. The substrate is assumed to
be stationary and of arbitrary shape. The boundary-layer equations are generalized
for a viscoelastic film obeying the Oldroyd-B constitutive model. These equations are
solved by expanding the flow field in terms of orthonormal shape functions in the
radial direction and using the Galerkin projection, combined with a time-stepping
implicit scheme, and integration along the flow direction. It is found that the viscosity
ratio and fluid elasticity can have a significant effect on steady state as well as
transient behaviour. It is also found that low-inertia and/or highly elastic fluids tend
to accumulate near the annulus, exhibiting a standing wave that grows with time.
This behaviour clearly illustrates the difficulty associated with coating viscoelastic
high-viscosity fluids. A criterion for film rupture is also established, which is based
on the steepening of flow and stress gradients. The topography of the substrate has
a drastic effect on the flow as well.

1. Introduction
This study examines the role of elasticity during the early stages of development

of a viscoelastic film emerging from an annulus and moving on a solid substrate of
axisymmetric shape. Steady flow and its stability are also examined. Other influencing
factors and their interplay with elasticity, such as inertia, gravity and substrate
topography, are also investigated. The study is obviously of close relevance to coating
flow (Weinstein & Ruschak 2004). Although steady film flow on a substrate has
been extensively investigated, little work has been devoted to transient behaviour.
This is of course understandable since it is the long-term behaviour, after transient
effects have subsided, that is usually of practical interest. However, when difficulties
are encountered in film flow processing, the origin of these difficulties may lie in
the initial stages of the process, long before the flow reaches steady state. More
importantly, the steady state may not be stable under some processing conditions,
particularly for polymeric films. It is thus crucial to examine initial transients, which
may allow early control of potential problems in practice. The time it takes a film
process to reach steady state is by itself an important issue. Polymeric fluids exhibit
different relaxation times, and therefore, different transient responses. The film flow
can also be inherently transient as a result of geometrical variations or continuous
changes in processing conditions.
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Understandably, thin-film flow has mostly been examined for Newtonian fluids
(Brourgin 1997; Kistler & Schweizer 1997). To a much lesser extent, non-Newtonian
film flows have also been considered (Szeri 1987; Larson 1992). Generally, most
studies involve either gravity- and/or surface-tension-driven flow (Quéré 1990; Chang
1994; Oron, Davis & Bankoff 1997; Meyers 1998). The effect of substrate topography
was considered by Kalliadasis, Bielarz & Homsy (2000) on the steady thin-film flow
over trenches and mounds. Mazouchi & Homsy (2001) compared the solution to two-
dimensional Stokes flow to their earlier thin-film based solution. This comparison
indicated that the thin-film hypothesis remains valid even in the presence of steep
topographic variation. Mazouchi & Homsy (2001) attributed this validity to the
smoothing role that surface tension effects tend to play. Their study was limited,
however, to surface-tension dominated inertialess flow. Ruschak & Weinstein (1999)
examined gravity-driven flow of a thin film over a round-crested weir. Similarly to
the present problem, the surface tension effect was neglected, and the inertia effect
was included.

Transient flow studies are often limited to the linear destabilization of the film
or to small-amplitude motion (Frenkel 1992; Larson 1992; Chang 1994). Studies
on finite-amplitude film deformation include the radial spreading in spin coating
(Watson 1964), the evaporation of liquid films (Burelbach, Bankoff & Davis 1988),
the instability and breakup of long annular liquid layers (Mashayek & Ashgriz 1995;
de Bruyn 1997), and the evolution of a falling film (Pumir, Manneville & Pomeau
1983; Takeshi 1999). Of closer relevance to the present problem, is the simulation of
Kalliadasis & Chang (1994), who examined the critical conditions for the formation
of solitary waves during the coating of vertical fibres. The long-wave equation was
solved using a matched asymptotic expansion, which joins the capillary outer region of
the large solitary wave to the thin-film inner region. Inertia was neglected. Nguyen &
Balakotaiah (2000) proposed an integral boundary-layer model for a free-falling film.

The present study incorporates nonlinearities stemming from both inertia and
elasticity. The interplay between inertia and other forces in thin-film flow has been
examined in the literature. Szeri (1987) reviewed some of the attempts made to extend
the classical Reynolds equation to include the effect of inertia in lubrication theory.
In a review article on fibre coating, Quéré (1999) discussed the effect of inertia on
rapid coating and droplet expulsion. For a general discussion on the role of inertia in
free-surface flow, see Leal (1992). Of closer relevance to the present study is the work
by Watson (1964), who examined the steady laminar and turbulent radial spread of a
liquid jet over a horizontal plane, including the special case of two-dimensional flow.
At large distance from the source, a similarity solution of the laminar boundary-layer
equations was sought. In particular, Watson found that for two-dimensional flow, the
steady (dimensionless) shape of the free surface is given by ηs = πx/

√
3Re =1.81x/Re,

where x is the distance from the source, and Re is the (modified) Reynolds number.
The steady surface profile was obtained in the absence of gravity and surface tension.
It constitutes an important limit form, which will be compared against the present
formulation. Khayat & Welke (2001) examined the two-dimensional transient film
flow. Comparison with Watson’s similarity solution in this case led to good agreement.

Although the thin-film formulation reduces the pressure to its hydrostatic part, thus
eliminating the momentum equation in the transverse (vertical or radial) direction
from the problem, the dimension of the problem remains the same as in the original
equation. Benney’s (1966) long-wave (LW) approximation is often used, especially for
small-inertia flow. At high Reynolds number, inertia is better accounted for through
the ‘boundary-layer’ (BL) approximation, which includes the effect of transverse flow.
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Salamon, Armstrong & Brown (1994) carried out a finite-element solution of the
full Navier–Stokes equations for the flow in a falling film. Comparison of their
results with those based on the LW approximation, indicates that serious limitations
exist in the validity of the LW equation. The major difference between the original
Navier–Stokes equations and the BL equations is the hydrostatic variation of the
pressure across the film depth. As a result, only the transverse momentum equation
is eliminated, but the convective terms are retained in the remaining equations, and
the number of boundary conditions is reduced. However, the solution of the BL
equations remains essentially as difficult to obtain as that of the Navier–Stokes
equations (Takeshi 1999). A depthwise integration of the momentum equation(s) in
the lateral direction(s) is usually performed by assuming a self-similar semi-parabolic
flow profile in the transverse direction, as was proposed (Shkadov 1967). Although
the depth-averaged equations are only of second order in time, they yield plausible
results, at least qualitatively, but they remain fundamentally questionable because of
the semi-parabolic assumption (Frenkel 1992; Takeshi 1999). A measure of the error
involved may be inferred by computing the free-surface profile in the absence of
gravity and surface tension, and comparing it to Watson’s result given above. From
the literature, the steady-state profile based on the semi-parabolic profile is easily
found to be ηs =2.5x/Re (Chang 1994). The parabolic approximation is widely
used in the literature, and its validity was established experimentally by Alekseenko,
Nakoryakov & Pokusaev (1985). However, it is generally argued that the parabolic
approximation is valid at low or moderately-low Reynolds number, and provided the
waves are far from the entry (Wilkes & Nedderman 1962; Bertshy & Chin 1993). In
addition to high-inertia flow, other flow conditions that restrict the range of validity
of the semi-parabolic profile include the presence of end effects, turbulent flow, and
(most likely) nonlinear effects stemming from shear-thinning or viscoelastic effects. A
more rigorous approach for the solution of the thin-film equations becomes almost as
difficult to achieve as for the original Navier–Stokes equations. Hence, conventional
solution techniques such as the finite-element or finite-difference methods are not
suitable, given the rapid spatio-temporal variation of the flow field in the presence of
steep waves. Frequent re-meshing, and an effective implicit time-stepping scheme are
required. Ruyer-Quil & Manneville (1998) used a three-term expansion of the flow
field in the transverse direction, and obtained three coupled equations for the surface
height, flow rate and stress. Takeshi examined the flow in a falling film at moderate
Reynolds number and large but finite Weber number, using a regularization method,
which consists of a combination of the Padé approximation and the long-wave
expansion (Takeshi 1999).

The free-surface flow of non-Newtonian fluids remains relatively unexplored,
particularly the flow of thin films. Spaid & Homsy (1994) examined the spin coating
of Oldroyd-B fluid films. Fomin,Hashida & Watterson (2003) examined rimming flow
on the inner surface of a horizontal rotating cylinder. Ro & Homsy (1995) examined
the influence of elasticity on the meniscus shape and film thickness for the creeping
flow induced by air injection into a Hele-Shaw cell, with significant surface tension.
Gravity-driven non-Newtonian films have been examined by Kang & Chen (1995),
also for creeping flow in the presence of surface-tension effects. Pasquali & Scriven
(2002) examined the creeping flow around a cylinder in a channel, and the flow
under the downstream section of a slot or knife coater. Lee, Shaqfeh & Khomani
(2002) applied the finite-element methods to studying viscoelastic Hele-Shaw and slot
coating flows. Bhatara, Shaqfeh & Khomani (2004) examined the interplay between
gravity and surface-tension effects for the creeping flow induced by air displacing
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a fluid. Surfactant-driven thin viscoelastic films have also been considered (Zhang,
Matar & Craster 2002).

The evolution of thin-film flow typically involves three distinct stages, which are
usually identified after flow inception (Khayat & Welke 2001). The first stage is the for-
mation of a wave near the channel or annulus exit, the second stage is the propagation
of the wave on the open substrate, and the third stage is the development of the steady-
state flow. The present modelling and simulation of the three stages are performed
for axisymmetric flow in order to examine the intricate wave and flow structures that
develop for a viscoelastic film. The problem thus consists of obtaining the shape of
the evolving free surface and the flow field inside the moving domain, as the fluid
emerges from the annulus. The flow is pressure and/or gravity induced. In this study,
a unified spectral approach is proposed to model the axisymmetric flow of a thin film
over a substrate of arbitrary shape. Given the importance of inertia and normal stress
upon inception, the BL formulation rather than Benney’s LW approximation will be
used. The flow equations are first mapped over the rectangular domain, and a formal
spectral expansion of the velocity field in terms of orthonormal basis functions is
introduced for the flow field.

Unlike the depth-averaging method, the spectral methodology used in the current
study becomes particularly suited for the early onset of wave motion near the annulus
exit. Assessment of convergence and accuracy is carried out by adopting different
truncation levels, varying the time increment and mesh size, and monitoring the
conservation of mass (volume). The overall validity of the basic approach is established
by comparing the two-dimensional steady-state solution against the similarity solution
of Watson (1964), and the solution based on the parabolic profile and the depth-
averaging procedure (Chang 1994). More extensive validation of the proposed
spectral methodology was carried out previously for the thin-film flow of Newtonian
(Khayat & Welke 2001) and generalized Newtonian (Kim & Khayat 2002) fluids. The
problem thus consists of obtaining the shape of the evolving free surface and the flow
velocity inside a moving domain, as the fluid emerges from the annulus. Details of
the free surface and flow field can be captured both explicitly and in the mean sense.
The present study is focused on the interplay between inertia and elasticity, which
are assumed to be the dominant effects in the flow. Conditions of shock formation,
which lead unavoidably to film rupture, are particularly emphasized. Although some
discussion and prediction of film rupture are included, surface-tension effects are
assumed to be negligible. Film rupture is attributed to strong velocity gradient and,
consequently, strong normal stress effect, rather than to film thinning as in Newtonian
fluids. Finally, the effect of substrate topography will be examined in detail.

2. Problem formulation and solution procedure
In this section, the film flow configuration is introduced, and the scaled conservation

and constitutive equations for a viscoelastic fluid film, as well as the boundary and
initial conditions are briefly discussed. The solution procedure is then discussed in
some detail.

2.1. Governing equations, boundary and initial conditions

The fluid is assumed to be an incompressible polymeric solution of density ρ, relaxa-
tion time λ, viscosity µ, and surface tension coefficient σ . In this study, only fluids
that can be reasonably represented by a single relaxation time and constant viscosity
are considered. The polymeric solution is assumed to be composed of a Newtonian
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solvent of viscosity µs , and a polymeric solute of viscosity µp , such that the solution
viscosity is given by µ = µs + µp . Regardless of the nature of the fluid, the continuity
and momentum balance equations must hold. The conservation equations for an
incompressible fluid can be concisely written as:

∇ · U = 0, ρ(U,T + U · ∇U) = ∇ · Σ + ρg, (2.1)

where U is the velocity vector, g is the acceleration due to gravity, T is the time,
and ∇ is the gradient operator. A comma followed by a subscript denotes partial
differentiation. The deviatoric part of the stress tensor, Σ , is composed of a Newtonian
component, corresponding to the Newtonian solvent, and a polymeric component, T,
corresponding to the solute. Thus,

Σ = −P I + µs(∇U + ∇U t ) + T, (2.2)

where P is the hydrostatic pressure, and t denotes matrix transposition. The
constitutive equation for T is taken to correspond to the Oldroyd-B fluid, which
can be written as (Bird, Armstrong & Hassager 1987):

λ(T,T +U · ∇T − T · ∇U − ∇U · T) + T = µp(∇U + ∇U t ). (2.3)

In the limit µs → 0, system (2.1)–(2.3) reduces to that corresponding to a Maxwell
fluid. In the limit µp → 0, the Navier–Stokes equations are recovered. The problem
is next examined in cylindrical polar coordinates (R, Θ , Z), with the usual notations
for the velocity and stress components.

Thus, consider the axisymmetric flow of a viscoelastic fluid as it emerges from an
annulus, as depicted in figure 1. The X-axis is directed vertically downward. The flow
may be induced by an axial pressure gradient inside the annulus and/or simply by
gravity. The emphasis in this study, however, is on the former configuration. The fluid
is assumed to occupy a domain Ω(T ) bounded by the free surface, R = E(X, T ), the
wetted part of the cylindrical substrate, RS(X), and the annulus exit X = 0. Since the
flow is axisymmetric, it will be examined in the (R, X)-plane, with R = 0 coinciding
with the axis of the cylindrical substrate. The governing conservation and constitutive
equations for axisymmetric flow of an Oldroyd-B fluid are given explicitly in Bird
et al. (1987).

It is observed that the stress equations for TRΘ and TXΘ admit zero values unless
these stress components do not vanish initially or at the boundary. In this work,
homogeneous boundary and initial conditions will be assumed. The annulus gap,
D, and the radius of the substrate at the annulus exit, L ≡ RS(X = 0), are taken as
radial and axial scale lengths, respectively. Three dimensionless groups emerge for
both Newtonian and non-Newtonian flows, namely, the modified Reynolds number,
Re, the aspect ratio, ε, the Froude number, Fr, and the capillary number, which are
explicitly written as:

Re =
ρV D2

Lµ
, ε =

D

L
, Fr =

V√
gD

, Ca =
µV

σ
, (2.4)

where V is the mean flow velocity in the annulus, and is taken as the reference
velocity. For a viscoelastic flow, two additional similarity parameters emerge, namely
the Deborah number, De, and the solvent-to-solute viscosity ratio, Rv, this latter being
related to the solvent-to-solution viscosity ratio, a. Thus,

De =
λV

L
, Rv =

µs

µp

, a =
µp

µ
=

1

Rv + 1
. (2.5)
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Figure 1. Schematic illustration of the axisymmetric flow of a viscoelastic fluid emerging
from an annulus.

Alternatively, the elasticity number, defined here as E =De/Re, will also be used
when highlighting the competition between inertial and elastic effects. Note that if
the flow is gravity driven, the reference velocity will be taken as V =

√
gD. The film

is assumed to be thin, with ε � 1. In this case, ε will be taken as the perturbation
parameter to reduce the problem to the boundary-layer type.

The scaling of position coordinates, velocity and shear stress components is obvious,
leading to

x =
X

L
, z =

R − L

D
, t =

V

L
T, ux =

UX

V
, uz =

UR

V ε
,

p =
Lε2

µV
P, h =

RS − L

D
, η =

E − L

D

τzx(τxz) =
Lε

µV
TRX(TXR), τzy(τyz) =

Lε

µV
TRΘ (TRΘ ), τxy(τyx) =

Lε

µV
TXΘ (TΘX).




(2.6a)
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The difficulty with the scaling of normal stress originates from the nonlinearities in
the upper-convective terms. Generally, we may set

τxx =
Lεα

µV
TXX, τyy =

Lεβ

µV
TΘΘ, τzz =

Lεγ

µV
TRR, (2.6b)

where α, β and γ are constants that are determined by ensuring the term balance in the
conservation and constitutive equations. If these equations are cast in dimensionless
form, and terms of O(ε2) and higher are excluded, then the reduced equations are
obtained as in Appendix A.

Clearly, if all terms are accounted for in the axial momentum equation (A 2), and
in analogy to the Newtonian limit, α should be set equal to 2. In this case, the axial
normal stress, τxx does not depend strongly on the rate of axial elongation, ux ,x , as
should be the case for shear dominated thin-film flow, but does not vanish because of
the nonlinear coupling with shear effects. Similarly, all the terms in the radial stress
equation (A 4) survive if β = γ = 0. This also ensures the survival of all the terms in
equation (A 7), which governs τzx . In this case, the radial momentum equation (A 3)
indicates that the pressure gradient in the radial direction p,z ∼ O(ε2). Therefore, and
similarly to Newtonian film flow, the pressure dependence on film depth is negligible.
Since there is no body force acting in the radial direction, p = p(x, t). In this work,
the inertia effect will be included in order to cover the widest flow range possible. In
this case, the conservation and constitutive equations in Appendix A reduce to:

ux,x + εuz + uz,z = 0, (2.7a)

Re(ux,t + uxux,x + uzux,z )

= −p,x + Re
Fr

2 + aRv(ux,zz + εux,z )+ τxx,x + τzx,z + ετzx, (2.7b)

p,z = 0, (2.7c)

De(τzz,t + ux τzz,x + uz τzz,z − 2τzzuz,z − 2τzxuz,x) + τzz = 2auz,z, (2.7d)

De(τyy,t + ux τyy,x + uz τyy,z − 2τyyuz) + τyy = εauz, (2.7e)

De(τxx,t + ux τxx,x + uz τxx,z − 2τzxux,z − 2τxxux,x) + τxx = 0, (2.7f)

De(τzx,t + ux τzx,x + uz τzx,z − τzzux,z + ετzxuz− τxxuz,x) + τzx = aux,z. (2.7g)

Note that the continuity equation (2.7a) is used to substitute the term −τzxux,x
− τzxuz,z in equation (A7) by the term ετzxuz, which appears in equation (2.7g). It
is observed that although the flow is decoupled from the azimuthal normal stress
component, τyy , this stress component does not vanish. It is also assumed that
no (wind) pressure acts on the fluid surface. For surface-pressure-driven flow, see
Kriegsmann, Miksis & Vanden-Broeck (1998) and the references therein. In this case,
and following the same scaling procedure as above, the dynamic condition in the
tangential and normal directions leads, respectively, to

aRvux,z (x, z = η, t) + τxz (x, z = η, t) = τxx (x, z = η, t) η,x (x, t), (2.8a)

p(x, z = η, t) = − ε3

Ca
η,xx. (2.8b)

In dimensionless form, the kinematic condition becomes

uz(x, z = η, t) = η,t (x, t) + ux(x, z = η, t)η,x (x, t). (2.9)
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The no-slip and no-penetration boundary conditions at the cylindrical substrate are

ux(x, z = h, t) = uz(x, z = h, t) = 0. (2.10)

The free surface is assumed to be fixed at the annulus exit so that

η(x = 0, t) = 1. (2.11)

In addition, plug-flow conditions are assumed to hold at the annulus exit. As to initial
conditions, the film layer is assumed to be of uniform thickness initially and at rest.

The present study is focused on the elastico-inertial range. The influence of surface
tension tends to weaken for flow with dominant inertia and/or gravity. This has
been particularly demonstrated for the flow of Newtonian films. Lee & Mei (1996)
examined the formation of steady solitary waves on inclined Newtonian thin-film
flow, and determined the dependence of the Weber number of different liquids on
the Reynolds number for both small and large angles of inclination. They found
that the surface tension effect decreases strongly with inertia. When cast in terms
of the present similarity parameters, the Lee & Mei results show that the capillary
number behaves roughly like Ca ∼ Re2/ε. This clearly suggests, from (2.8b), that the
effect of surface tension is on the order of ε4/Re2. This argument may be extended
to include turbulent flow of a thin film (Balmforth & Mandre 2004; Stansby & Feng
2005), or the limit of inviscid flow, such as the formation of tsunamis (Voit 1987), in
which cases, surface-tension effects are clearly negligible. Omodei (1979) carried out
a two-dimensional finite-element simulation of steady Newtonian jet flow. He found,
for example, that the height of the free surface changes by 8% when the capillary
number changes from 0.83 to infinity at a Reynolds number (based on channel exit
half height) equal to 1, compared to a change in jet thickness of less than 1% when
the Reynolds number is greater than 10. A further drop in capillary number is thus
required to observe any palpable change in jet height at moderately large Reynolds
number. However, further decrease in Ca is not realistic according to experiment. See,
for instance, the early study by Goren & Wronski (1966) on capillary jet flow. The
capillary number can be large for some (essentially) Newtonian fluid flow with high
viscosity, such as the flow of polybutene oils. As an illustration, consider polybutene
fluid with mean viscosity, µ = 80mPa s, density ρ = 1200 kg m−3, and surface tension
coefficient σ = 50 mN m−1. The film is assumed to move at 12 m s−1 out of an annulus
of 2 mm gap, on a substrate of radius L = 20 mm. In this case, ε = 0.1, Re= 36 and
Ca = 19.2, making surface-tension effects negligible, and non-negligible inertia. This
value of Ca is within the same order of magnitude as those encountered in polymer
processing, such as the injection moulding of polybutene (Behrens et al. 1987).

Surface-tension effects are expected to be even less significant for typical polymeric
film flow because of higher viscosity and lower surface-tension coefficient. In jet flow,
for instance, polymer solution jets generally take longer to break up than Newtonian
jets of comparable (shear) viscosity; sometimes, viscoelastic jets do not form droplets
at all (Gordon, Yerushalmi & Shinnar 1973). Melt fracture occurs essentially in the
absence of surface-tension effects for elastic fluids. Even weakly elastic fluids can lead
to moderately large capillary numbers, such as 0.5 and 0.75% polyethylene oxides
moving at a speed of 10 m s−1, with Ca = 1.2 and 11, respectively. Strongly elastic
polyacrlylamide solutions of 0.1 to 0.75% lead to corresponding Ca value in the
range 16 to 600 (Middleman 1977). Boger fluids, such as the class of fluids considered
in the present study, can also lead to large capillary number flow (Huzyak & Koelling
1997). For rimming flow, the scaling analysis of Fomin et al. (2003) also shows that
surface-tension effects are negligible in this case.
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In this work, it will be assumed that the Reynolds, Froude and Deborah numbers
are all of order one, whereas Ca = O(1/ε). The flow is therefore assumed to be inertia,
elasticity and/or gravity dominated, and surface-tension effect will be neglected. The
present work should be regarded as complementary to studies where surface-tension
effects are dominant (see references in § 1). In this case, and similarly to Newtonian
film flow, since p does not depend on z, the pressure must vanish everywhere to
satisfy the zero-pressure condition (2.8b) at the film surface. From now on, the axial
pressure gradient will be dropped from equation (2.7b).

2.2. Solution procedure

In the Newtonian literature, the equations for thin-film flow are generally solved
by imposing a semi-parabolic profile for velocity and depth-averaging the equations
across the thickness. This similarity approach leads to an exact formulation in the
absence of inertia, and is commonly adopted in the presence of inertia, making it
valid only to a flow at small Reynolds number or far from the (channel) exit (Watson
1964; Shkadov 1967; Prokopiou, Cheng, & Chang 1991). Clearly, this approach would
not be adequate for viscoelastic flow given the strong nonlinearities stemming from
both inertia and normal-stress effects. The key difficulty remaining, of course, is
the explicit z-dependence of the velocity and stress components. Even if the x- and
z-dependencies can be assumed to be decoupled, with possible use of a separation
of variables type argument, the question remains as to the type of z-dependence.
Formal treatments in the form of flow expansion in the z-direction were suggested
(Zienkievicz & Heinrich 1979; Ruyer-Quil & Manneville 1998; Takeshi 1999). The
current formulation closely follows and generalizes that of Zienkiewicz & Heinrich
(1979), which emphasizes water flow over extended areas. However, in contrast to
Zienkiewicz & Heinrich (1979), the radial (transverse) velocity component will not
be neglected, and the variation in surface height with time and space will also be
included.

The problem is first mapped onto the rectangular domain, then the flow variables
are expanded in terms of polynomial shape functions in the z-direction, and the
Galerkin projection method is applied to generate the equations that govern the
expansion coefficients. A Lagrangian time-stepping implicit finite-difference approach
is implemented for the solution of the equations that govern the expansion coefficients,
coupled with a Runge–Kutta integration scheme along the flow direction. The solution
procedure is similar to that developed previously for the two-dimensional coating
flow of Newtonian (Khayat & Welke 2001) and generalized Newtonian fluids (Kim &
Khayat 2002). In the present case, the methodology is even more involved, but only
a summary will be given. System (2.7) is reduced to a transient one-dimensional
problem by expanding the velocity and stress components in terms of orthonormal
modes in the radial direction. The axial velocity component, ux , and the normal stress
components, τxx and τzz, and the shear stress component, τxz, are represented in terms
of orthonormal shape functions, φi(ξ ), ψi(ξ ) and θi(ξ ), as follows:

ux(x, z, t) =

M∑
i=1

Ui(x, t)φi(ξ ), τxz(x, z, t) =

M∑
i=1

Si(x, t)ψi(ξ ),

τzz(x, z, t) =

M∑
i=1

Ri(x, t)θi(ξ ), τxx(x, z, t) =

M∑
i=1

Qi(x, t)θi(ξ ),




(2.12)

where M is the number of modes, Ui(x, t), Ri(x, t), Qi(x, t) and Si(x, t) are unknown
coefficients, and ξ = (1/∆)(z − Σ/2) is the mapping from z ∈ [h, η] to ξ ∈ [−1/2, +1/2].
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Here, Σ = η + h and ∆ = η − h. In addition to the orthonormality condition, the shape
functions must satisfy various boundary conditions, some of which are not obvious.
Guidance may be taken from limit flow configurations, particularly the steady flow
on straight substrate due to gravity, and, more importantly, the limit of Newtonian
film flow, which must be recovered by the viscoelastic formulation as Rv → ∞. The
difficulty for viscoelastic flow originates from the fact that, in contrast to Newtonian
flow, the shear stress does not simply and necessarily vanish at the free surface.
This difficulty is reflected in condition (2.8a), and the fact that there are no separate
boundary conditions on shear and normal stresses. However, one way to satisfy
condition (2.8a) and recover the Newtonian limit is simply to set both shear and
normal stresses equal to zero at the free surface. Thus,

〈φiφj 〉 = δij , φi

(
ξ = − 1

2

)
= φ′

i

(
ξ = +1

2

)
= 0, (2.13a)

which satisfy condition (2.10). Here δij is the Kronecker delta, and 〈 〉 denotes the
integral over the interval ξ ∈ [ − 1/2, +1/2]. Noting that ψi must be one order less
than φi , we have

〈ψiψj 〉 = δij , ψi

(
ξ = 1

2

)
= 0. (2.13b)

The boundary conditions for θi are less obvious. However, the normal stress is expected
to behave predominantly like the square of shear stress in the present shear-dominated
flow. At the free surface, both the normal and shear stresses are taken to vanish. At
the substrate, we can expect the shear stress to reach a maximum. In this case,

〈θiθj 〉 = δij , θi

(
ξ = +1

2

)
= θ ′

i

(
ξ = − 1

2

)
= 0. (2.13c)

The first three modes for the shape functions are explicitly given in Appendix B.
The radial velocity component, uz, is determined by integrating the continuity equ-
ation (2.7a) to give

uz(x, z, t) = ∆

M∑
k=1

[ε∆ (Fkξ − Gk) − Fk]Uk,x

−
M∑

k=1

[
∆,x (Fk − φkξ ) −

∑
,x

2
φk − ε∆∆,x (Fkξ − 2Gk) + ε∆

∑
,x

2
Fk

]
Uk,

(2.14)

where Fi(ξ ) =
∫ ξ

−1/2
φi(ξ ) dξ and Gi(ξ ) =

∫ ξ

−1/2
ξφi(ξ ) dξ .

Expression (2.14) allows the elimination of the radial velocity component. The mean
values of the axial and radial velocity components are denoted by U (x, t) and W (x, t),
respectively, whereas those of shear, radial and axial normal stress components are
denoted by S(x, t), R(x, t) and Q(x, t), respectively. The mean primary normal stress
difference is then given by N (x, t) = Q(x, t) − R(x, t) In this case, the kinematic
equation may be rewritten as:

(1 + εη) η,t = − (η,x −h,x) U − (η − h) U,x = −∆,x U − ∆U,x . (2.15)

Similarly to Newtonian and generalized Newtonian flows (Khayat & Welke 2001;
Kim & Khayat 2002), it is found that any arbitrary number of modes can be intro-
duced, each satisfying the boundary and orthonormality conditions, but reasonable
accurate radial distributions can be obtained with M = 2 or 3. A hierarchy of equations
are obtained for the coefficients, Ui(x, t), Qi(x, t), Ri(x, t) and Si(x, t), when expansions
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(2.12) and (2.14) are substituted into equations (2.7), which are then multiplied by
the appropriate shape functions and integrated over ξ ∈[−1/2, +1/2]. The resulting
system of 4M + 1 partial differential equations in the (x, t) domain are shown in
Appendix C, and are then solved using an implicit finite-difference discretization in
time and sixth-order Runge–Kutta integration scheme in x.

3. Discussion and results
The formulation and numerical implementation above is now applied to examine

the steady and transient viscoelastic film flow emerging from the annulus, as illustrated
schematically in figure 1. The influence of fluid elasticity is examined for moderately
low Reynolds number so as not to make inertia dominant. The physical domain of the
fluid is assumed to extend from x = 0 to x → ∞, but the domain of computation will
be restricted to x ∈ [0, 10]. The influences of inertia, aspect ratio, substrate topography
and gravity are also investigated. Calculations are based on M = 3 unless otherwise
specified.

It will be helpful to consider limit flow cases where analytical expressions can be
obtained. The depth-averaged equations, which correspond to M =1, are amenable
to analytical manipulation. For simplicity, the discussion will be limited to steady
two-dimensional flow (ε =0) over a straight cylinder (h = 0). In this case, the depth-
averaged x-momentum, axial and radial normal stress, and shear stress equations
reduce, respectively, to:

ReUU,x =
Re

Fr2
C1 + a RvC2U

3 + C3Q,x +C4

U,x

U
Q + C5US, (3.1a)

De

[
UR,x +C6RU,x +C7S

U,2x
U 2

+ C8S
U,xx

U

]
+ αR = aC9U,x , (3.1b)

De(UQ,x +C10QU,x +C11U
2S) + αQ = 0, (3.1c)

De

[
US,x +C12Q

U,2x
U 2

+ C13Q
U,xx

U
+ C14U

2R

]
+ βS = aC15U

2. (3.1d)

These equations must be solved subject to:

U (x = 0) = 1, Q(x = 0) = R(x = 0) = S(x = 0) = 0. (3.2)

In this case, the film height and mean depthwise velocity component are given in
terms of the mean streamwise velocity component through

η (x) =
1

U (x)
, W (x) = C16

U,x

U
= −C16

η,x

η
. (3.3)

The constants α, β and C1, . . . , C16 are introduced in Appendix D. Analytical solu-
tions will be discussed for a Newtonian flow, and viscoelastic flows with dominant
inertia and gravity. In general, the depth-averaging formulation is expected to hold
reasonably well for the flow far from the annulus exit where no rapid variation in
velocity and stress occur.

3.1. Influence of elasticity and retardation

The influence of fluid elasticity can be examined by either varying Rv or De. The
overall influence of elasticity on steady film flow on a straight substrate is reported
in figure 2, where the steady film profile, ηs(x), mean radial velocity, Ws(x), mean
polymeric primary normal stress difference, Ns(x), and mean polymeric shear stress,
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Figure 2. Influence of elasticity on steady-state film height, mean radial velocity component,
shear stress and normal stress, in the absence of gravity (1/Fr= 0). Re= 100, Rv= 1, ε = 0.1
and De ∈ [0, 3].

Ss(x), are shown for De ∈ [0, 3], Rv =1, Re = 100 and ε = 0.1. The mean axial
velocity, Us(x), is essentially a mirror image of the film height as a result of mass
conservation, and will therefore not be explicitly considered. At small Deborah
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number, the film exhibits a swell near the annulus exit, which is typical of both
Newtonian and viscoelastic fluids, and the film thickness increases monotonically
with position. The radial flow velocity exhibits a maximum, which also corresponds,
expectedly, to a maximum in shear stress. The flow conditions appear to be little af-
fected by elasticity far downstream. The radial flow is particularly strong near the
annulus exit, but essentially vanishes shortly downstream. At some distance from the
annulus exit (x > 5), the film thickness increases linearly with distance with a slope that
is independent of De. Both the radial velocity and stress components approach
relatively constant levels, with considerable weakening of radial flow. It is observed
that although shear effects are evidently strong near the annulus exit, their level
becomes essentially the same regardless of fluid elasticity. In contrast, elongation
effects depend strongly on De. This dependence of Ns(x) on De is, in fact, linear,
similar to that for a flow in a duct, as velocity gradients tend to diminish significantly
far downstream. In this case, the flow kinematics is essentially that of Newtonian flow.
In the case of very small Deborah number (De = 0 in this case), while the normal
stress increases smoothly near the annulus exit (x =0), the shear stress experiences
a sudden jump. A jump in polymeric stresses is expected in the limit De → 0 given
the singularity of the constitutive equations in this limit. See, for instance, Khayat &
Pan (2004) for a multiple-scale analysis for the viscoelastic free-surface flow inside a
thin channel. However, in the present problem, the singularity is felt only in the shear
stress as a result of strong shearing near the annulus exit, with a jump estimated
at τzx, x ≈ aux,z/De, as equation (2.7g) suggests. The absence of elongational term
in the normal stress equations prohibits a similar singular behaviour in NS(x = 0).
The normal stress equations, (2.7e, f ), are identically satisfied for vanishingly small
normal stress and rate of strain.

Beyond a critical value, Dec, of the Deborah number (here Dec ≈ 0.5), the film
profile exhibits a wavy structure, which tends to dampen with x. This waviness is
particularly obvious here for De = 3. Although the normal stress profiles are not
affected qualitatively by the level of elasticity, the profiles of the radial velocity and
shear stress exhibit a minimum when the film becomes wavy. More importantly, and
this is particularly obvious from the Ws profiles, a steep gradient develops between
the two extrema, which evolves toward a discontinuity or shock as De increases
further (De > 3). This response is similar to that encountered under steady-state
conditions for gravity-driven flow (Kriegsmann et al. 1998). This signals, in reality,
the breakdown or rupture of the film. The spatial waviness is generally associated with
temporal overstability, which is typically expected for highly elastic fluids. The spatial
instability is difficult to predict in most viscoelastic studies involving free-surface flow
because it is associated with steep strain rate, as illustrated in figure 2.

The link between shock formation and film rupture is invoked here because of the
similarity of viscoelastic film flow with solid deformation (Middleman 1987; Tanner
1999). We may then suspect that, unlike Newtonian films, a viscoelastic film need not
reach zero or negligible thickness to rupture. However, a viscoelastic rupture is not
expected to be brittle; some necking down must still occur before rupture, similarly
to ductile fracture. Rupture occurs in solids when the stress exceeds a critical level.
Analogously, melt fracture occurs in viscoelastic fluids once the wall shear stress
(or, equivalently, the Deborah or Weissenberg number) exceeds a critical value. The
onset of waviness predicted in figure 2 is of course reminiscent of the onset of
melt fracture in film extrusion/casting. The waviness also correlates with the onset
of buckling instability predicted in viscoelastic film flow (Kumar & Graham 2000).
For a Newtonian film flowing on a rigid substrate, the main rupture mechanism
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Figure 3. Dependence of the critical Deborah number on the viscosity ratio for the onset of
steady film waviness and rupture, in the absence of gravity (1/Fr = 0). Re= 100 and ε = 0.1.

is the combined effect of shearing and surface-tension. For a viscoelastic film, the
combination of shearing and extension is expected to play the dominant role in film
rupture. Extensional flow obviously results from normal stress (elastic) effects, and is
expected to increase as film waviness increases. As the shock forms in flow velocity
(reflecting infinite shear rate), the film experiences a significant increase in both shear
and normal stress (eventually to infinity), but especially in normal stress as this latter
grows as the square of shear rate, while shear stress remains essentially proportional
to shear rate. Close to shock formation, normal stress is expected to exceed a critical
value, which, similarly to solid fracture, should unavoidably lead to film rupture.

In this work, shock formation is assumed to be closely associated with film rupture.
To our knowledge, this association has not been made previously in the literature.
However, for filament jet flow (for instance) the maximal strain rate occurs during
the final breakup of the filament (Christanti & Walker 2001). Shock formation is
examined further for Re = 100 as a function of the viscosity ratio. Figure 3 illustrates
the dependence of the threshold Deborah numbers on viscosity ratio for the onset of
spatial waviness and film rupture. The two delimiting De curves are monotonic, with
linear dependence on Rv for large viscosity ratio. The margin of wavy film flow tends
to widen with Rv. Figure 2 shows clearly that spatial waviness is of secondary nature
as the oscillation appears in the form of modulation around the mean free-surface
level. The waviness is thus suspected to result from severe coupling between normal
stress and flow kinematics, and may thus not be captured in a formulation that is
only weakly nonlinear. Valuable lessons have already been learned from the flow of
a thin Newtonian film. In that case, Watson’s similarity solution serves as a reference
against which approximate solutions can be compared. It was shown, in particular,
that the depth-averaging formulation is not satisfactory for Newtonian flow, even
for flow with moderate inertia. For strongly nonlinear flow, a Galerkin projection
formulation, similar to the one adopted here for the viscoelastic problem, is required,
and leads to excellent agreement with Watson’s similarity solution (Kim & Khayat
2002).



Thin-film flow of a viscoelastic fluid 51

Additional insight is gained by examining the solution to the depth-averaged
equations (3.1) in the absence of gravity. Since the current results are reported for
moderately large Reynolds number, a perturbation expansion will be carried out in
terms of the small parameter 1/Re. To leading order in 1/Re, the flow from equations
(3.1) is given by

ηs(x) = Us(x) = 1, Ws(x) = Rs(x) = 0, Ss(x) =
aC15

α

(
1 − e−αx/De

)
,

Ns(x) = −aDeC11C15

[
1 +

αβ

α − β

(
e−αx/De

α
− e−βx/De

β

)]
,




(3.4)

which reveals that the stress components decay monotonically with x. Both normal
and shear stresses scale linearly with the solute-to-solvent viscosity ratio, a. At large
x, the shear stress approaches a level independent of fluid elasticity, whereas the
normal stress approaches a level that is proportional to De. These observations are
qualitatively consistent with the results in figure 2. More generally, it is clear that
inertia tends to weaken the maximum in shear and normal stresses, to eventually lead
to monotonic growth. Thus, a film flowing at relatively higher rate or possessing
relatively smaller viscosity tends to rupture further downstream. For a typical
viscoelastic film flow, inertia tends to be moderate, and the film is likely to rupture
near the annulus exit. The solution to O(1/Re) shows that the film height does not
possess an extremum, which thus excludes the onset of spatial waviness. It is therefore
concluded that, in contrast to the current formulation, the depth-averaged equations
cannot support the onset of spatial waviness. It is emphasized that the weakness
of the depth-averaged equations is the decoupling resulting from the assumption of
similarity profile across the film.

Consider now transient flow. Two contrasting flow limits will be examined in order
to illustrate the influence of elasticity, namely the case of a Newtonian fluid, and
that of an upper-convected Maxwell fluid. The Newtonian flow limit is recovered by
setting Rv → ∞(aRv = 1). Figure 4 shows the evolution of the Newtonian film height,
η(x, t), as well as that of the mean radial velocity component, W (x, t), for a flow
at Re =100 and ε = 0.1. A three-dimensional perspective is also shown. The figure
shows the film height at equal time intervals, including the (flat) initial and steady-
state profiles. The film height displays a maximum, which propagates downstream
with time, exhibiting a wavelike structure. The surface wave widens with time as the
film thickens everywhere. There is lack of symmetry with respect to the wave crest
as a result of high inertia. The steady state is swept closely by the wave tail, but the
film surface is always below the steady state. Eventually, the steady state is reached.
The mean radial flow reaches a maximum at the crest of the surface wave, but the
maximum weakens with time as the flow approaches the steady state.

In the presence of elasticity, the flow response can be dramatically different. Figure 5
shows the flow response for a highly elastic fluid. In this case, Re = 100, ε = 0.1, Rv =0
and De = 2. There is a tendency for the film height to propagate downstream in the
form of a solitary wave, but, in contrast to Newtonian flow, the wave tends to simul-
taneously move upward, exceeding the steady state, and asymptotically levelling off
further downstream. With time, the film height experiences a sharp drop downstream
as the wave steepens. The drop is a reflection of strong elongational flow or normal
stress as in converging/diverging flow. There is simultaneously a strong radial normal
stress. The radial flow velocity increases overall in strength as the fluid moves
downstream and reaches a maximum at the crest of the surface wave. As the free
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Figure 4. Transient flow response for a Newtonian fluid, in the absence of gravity (1/Fr =0).
Re= 100 and ε = 0.1. The figure shows the evolution of the film height and mean radial
velocity. A three-dimensional perspective is also shown.

surface deforms further, W exhibits a maximum at the tail of the wave, a minimum at
the crest, and a relatively weak maximum ahead of the crest, to then asymptotically
vanish downstream, where the film is practically of constant thickness. There is
considerable gain in strength in radial flow with time, with W reaching a third of
the axial flow in magnitude. However, the steady radial flow is relatively weak. The
significance of the radial flow is further appreciated when the entire flow field is
examined (not shown), which indicates clearly the sudden change in direction that
the radial flow takes below the crest, where a strong radial flow develops near the
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Figure 5. Transient flow response for a highly viscoelastic fluid, in the absence of gravity
(1/Fr = 0). Re= 100, Rv =0, ε =0.1 and De= 2. The figure shows the evolution of the film
height and mean radial velocity. A three-dimensional perspective is also shown.

substrate, along with a strong inward flow below the wave crest. It is important to
note that the radial flow is not negligible as the long-wave approximation suggests
(Takeshi 1999). The strong jump in radial flow depicted from figure 5 clearly reflects
shock formation, and simultaneously signals the rupture of the film. Unlike the case
of a Newtonian fluid (see figure 4), there is strong movement towards the substrate
(W< 0). At any time, the trailing edge of the surface wave embraces closely the
steady-state profile. There is additional symmetry breakup in the wave shape as a
result of the combined effect of both inertia and normal stress. The question as
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to whether the steady-state profile is ever reached over the long time is obviously
important to address. The current thin-film results clearly indicate that the steady
profile will never be reached for a highly elastic fluid. Additional mechanisms are
required to halt the wave growth, such as surface-tension and/or gravity effects
(Kalliadasis & Chang 1994). However, surface-tension effects are probably negligible
for highly elastic polymeric films flowing with high inertia. It is thus expected that
viscoelastic films experience pronounced spatial (and temporal) fluctuation, resulting
in film rupture, similarly to the breakdown of polymeric flows in other processes such
as melt fracture (Tanner 1999). The wave growth displayed in figure 5 is not the result
of numerical instability; rigorous convergence and stability criteria have been applied
to ensure numerical accuracy (see Khayat & Welke 2001; Khayat & Kim 2002;
Kim & Khayat 2002). The steady state is simply unconditionally unstable (to both
infinitesimal and finite disturbances). The viscoelastic flow equations, especially the
boundary-layer equations (2.7) and (2.9), are hyperbolic, and the wavelike behaviour
is effectively the result of the hyperbolic nature of the thin-film equations. The origin
of wave growth and the role of initial conditions were examined previously for a
Newtonian fluid (Khayat & Kim 2002).

3.2. Role of inertia and gravity in viscoelastic film flow

The forces of inertia, gravity and normal stress compete in an intricate and significant
manner. Obviously, for typical polymeric flow, inertia tends to be less dominant,
leaving normal stress effects to play an even more dominant role than demonstrated
above. An interesting question is whether a flow with both high normal stress and
inertia behaves similarly to a flow with both low normal stress and inertia. In other
words, is it only a matter of relative dominance (of inertia relative to normal stress
effect) that is of significance to film flow? If this is the case, there should be only
one similarity parameter in the problem; the elasticity number should replace both
the Deborah and Reynolds number (see below). The flow at both moderately large
Reynolds and Deborah numbers has already been examined above (see figure 2).
Consider now the influence of inertia for a flow at smaller Deborah number. Figure 6
illustrates the flow response for De = 0.5, Rv = 1, ε = 0.1, and Re ∈ [20, 100], in the
absence of gravity. A significant difference is found, at least in appearance, between
the flow with both high elasticity and inertia (figure 2) and the flow with both low
elasticity and inertia (figure 6). In the latter case, for relatively low inertia (see the
curves corresponding to Re = 20 in figure 6), the surface height experiences a sudden
change in slope near the exit. Simultaneously, there is a strong maximum in velocity
and stress that is present at the point of transition, followed by a weak minimum.
This behaviour is reminiscent of continuous phase transition (Reichl 1984), where,
similarly to the film height, the Gibbs free energy is continuous against temperature,
but its slope changes rapidly. This in turn leads to a peaking in the heat capacity at
the transition point, similarly to the peaking in velocity and stress here. In the present
case, the slope dηs/dx behaves like the entropy. As Re increases, the transition in
slope subsides, leading to a smoother monotonic increase in film height. There is
symmetry around the maximum in velocity and stress for a flow with weak inertia,
resulting from the weak symmetry-breaking convective terms compared to figure 2.
Closer comparison between figures 2 and 6 hints at a similarity in the flow. This is
particularly striking when the curves corresponding to De =3 in figure 2 (Re = 100)
are compared to the curves corresponding to Re = 20 in figure 6 (De =0.5). The
similarity in behaviour becomes evident stretching the x values in figure 6. Note in
this case that the elasticity number is roughly the same, 0.03 compared to 0.025. The
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Figure 6. Influence of inertia on steady-state film height, mean radial velocity component,
shear stress and normal stress for a viscoelastic fluid, in the absence of gravity (1/Fr= 0).
De =0.5, Rv= 1, ε = 0.1 and Re ∈ [20, 100].

issue of similarity and scaling will be revisited below after considering the effects of
gravity on the flow.

Further insight into the role of inertia is now gained by inspecting the solution of
the depth-averaged equations (16) for a Newtonian fluid. In this case, the height and
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mean radial velocity component reduce to:

ηs(x) = 1 − C2

x

Re
, Ws(x) =

C2C16

Re − C2x
. (3.5)

Clearly, the film thickness grows linearly with x, with a slope equal to −C2/Re =
2.33/Re. This linear behaviour and the dependence on the Reynolds number are
similar to the film profiles shown in figure 6. The slope is overestimated by equation
(3.5) when compared to the value of 1.83/Re predicted by Watson’s (1964) similarity
y solution. Clearly, the film at lower Reynolds number tends to grow more rapidly
near the exit; the lack of inertia prohibits the film from advancing downstream. In
the limit of creeping flow, the fluid accumulates near the annulus exit and does not
move. This is a singular limit for thin-film or boundary-layer flow (see equation (2.2)).

So far, results were reported in the absence of gravity. In contrast to two-
dimensional flow, gravity acts in the direction of axial flow, which makes the gravity
term easier to handle as it is decoupled from the surface height. However, the effect
of gravity can be significant even though it is present as a constant source term
in equation (2.7b). Some insight may be preliminarily gained by examining two-
dimensional steady-state flow using the depth-averaged equations (3.1). In particular,
two limit flows can be recovered analytically, namely the flow with high inertia, and
Newtonian flow. For a viscoelastic fluid at high Reynolds number,

ηs(x) =
1√

2C1

Fr2
x + 1

, Ws(x) =
C1C16

2C1x + Fr2
, (3.6)

indicating that the film height (velocity) decreases (increases) monotonically with
position. For a Newtonian fluid at any Reynolds number, the film is dictated by the
equation:

dηs

dx
= − C2

Re

(
1 +

C1Re

C2Fr2
η3

s

)
=

2.33

Re

(
1 − Re

3.6Fr2
η3

s

)
. (3.7)

The presence of gravity for a viscous fluid generally forces the free surface to deviate
from the linear growth in (3.5). The vanishing of the slope signals either a reversal from
growth to decay near the annulus exit, or a levelling in film height far downstream.
Hence, at a critical Froude number, Frc =

√
Re/3.6, the slope at the annulus exit

is zero, and remains zero for x > 0. In this case, viscous and gravity forces are
in balance. For Fr > Frc(Fr < Frc), the surface slope far downstream is positive
(negative). Consequently, the film height decreases (increases) with x until it levels
off at a certain position, x = x∗, where the film thickness remains constant further

downstream (x > x∗), with corresponding film height η∗
s ≡ ηs(x

∗) = 3
√

3.6Fr2/Re.
This prediction should also hold for a viscoelastic fluid since the flow kinematics is
essentially independent of the Deborah number far from the exit.

The observations based on expressions (3.6) and (3.7) are expected to hold
reasonably for axisymmetric flow, especially when the aspect ratio, ε, is very small.
Figure 7 illustrates typically the influence of gravity on steady-state flow with high
inertia, for Re = 100, Rv = 1, ε = 0.1, De = 2.5 and 1/Fr ∈ [0, 0.5]. The critical Froude
number for reversal from growth to decay in film height is estimated from figure 7
to be Frc ≈ 6, which is slightly higher than that corresponding to two-dimensional
Newtonian flow (Frc = 5.22). When the gravity effect is dominant, ηs decreases at a
rate essentially equal to the prediction of equation (3.7). In this case, the critical surface

level is estimated from two-dimensional flow to be approximately η∗
s =

3
√

0.036Fr2. For
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Figure 7. Influence of gravity on steady-state film height, mean radial velocity component,
shear stress and normal stress, for a viscoelastic fluid with high inertia. Re= 100, Rv= 1,
ε = 0.1, De= 2.5 and 1/Fr ∈ [0, 0.5].

a flow with relatively weak gravity, this approximation is expected to be poor given
the relatively strong elastic effect. Indeed, for 1/Fr = 0.1, the film height is 1.21, with
an overestimate of 1.44 by the two-dimensional Newtonian prediction (3.7). Figure 7
indicates that the mean radial flow is strongly affected by gravity near the annulus



58 R. E. Khayat and K.-T. Kim

0

2

4

6

8

0.2 0.4 0.6 0.8 1.0

Re = 25
     50
     75
    100

De

0.02

0.04

0.06

0.08

E

1/Fr

0 0.2 0.4 0.6 0.8 1.0

Figure 8. Dependence of the critical Deborah and elasticity numbers on gravity and inertia
for the onset of steady film rupture. Rv= 1, ε = 0.1 and Re ∈ [20, 100].

exit while the shear and normal stress are not. Both velocity and stress display an
overshoot when gravity is weak, but tend to increase monotonically with position
when gravity is strong. In this case, elongational effects are strong as a result of film
contraction. The flow with relatively high inertia and gravity is typically reflected
by the profiles corresponding to 1/Fr= 0.5 in figure 7. Indeed, expressions (3.6)
appear to be excellent approximations for this case, giving very close estimates of
ηs(x = 10) = 0.48, Ws(x = 10) = −0.022 to those in the figure.

It is then clear that the contraction due to gravity increases normal stress effects,
which in turn are expected to play a prominent role in causing film rupture. The
interplay between gravitational and elongational effects (as well as those of inertia)
in this case is, however, not obvious. Figure 8 shows the dependence of the critical
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level of fluid elasticity for film rupture on gravity, for various levels of inertia. The
critical Deborah and elasticity numbers are plotted against 1/Fr for Rv = 1, ε = 0.1
and Re ∈ [25, 100]. Several important observations are inferred from figure 8. A
low-inertia film tends to rupture at lower Deborah number, which is essentially
independent of gravity. More importantly, and by extrapolation, the film appears to
be uniformly unstable in the (singular) limit of zero Reynolds number. There is a
maximum in Der , which strengthens with Re. Thus, there is an optimum level of
gravity that exists, which varies slightly with Re, at which the film is most stable. The
critical Deborah number increases linearly in the absence of gravity, which explains
the independence of E on Re in this case. This is almost the case also for a strong
gravitational effect, where the E vs. 1/Fr curves tend to collapse onto one curve.

The interplay between gravity and inertia is further explored upon examining the
flow at low Reynolds number. Figure 9 displays the influence of gravity on steady
film and flow profiles for Re = 20, Rv =14, ε =0.1 and De = 0.5. In contrast to
high-inertia flow (see figure 7), the flow experiences strong gradient in velocity and
stress, particularly near the annulus exit, as a result of elastic effect. In this case, both
velocity and stress exhibit strong over- and under-shoots coinciding with the sudden
change in slope of the film surface. Figure 10 shows the evolution of the film for the
low-inertia fluid under moderate gravitational effect (1/Fr = 0.3). In contrast to the
flow in the absence of gravity (compare with figures 4 and 5), the flow does not evolve
monotonically towards the steady state. In the beginning, the film surface experiences
a relatively strong elevation near the annulus exit, with the film thickness decaying
downstream close to its initial level. This original overshoot continues to strengthen
with time until the film height reaches near steady-state level near x = 0, at which
stage the film surface becomes wavy everywhere. The waviness, however, subsides
with time as the film shape approaches asymptotically the steady state.

Finally, the similarity discussed above between figures 2 and 6, and the independence
of the critical elasticity number on Reynolds number in figure 8, can be explained by
rescaling the governing equations. Only some of the variables need to be rescaled,
namely

x → x

Re
, t → t

Re
, uz → Reuz, τii → τii

Re
, (3.8a)

where i = x, y, z. The rest of the variables remain unchanged. In this case, the con-
tinuity equation retains its original form, so that the conservation equations, (2.7a, b),
now read,

ux,x + εuz + uz,z = 0, (3.8b)

ux,t + uxux,x + uzux,z =
Re

Fr2
+ aRv (ux,zz + εux,z) + τxx,x + τzx,z + ετzx, (3.8c)

while the constitutive equations, (2.7d–g), become

E(τzz,t + ux τzz,x + uz τzz,z − 2τzzuz,z − 2τzxuz,x) + τzz = 2auz,z, (3.8d)

E(τyy,t + ux τyy,x + uz τyy,z − 2τyyuz) + τyy = εauz, (3.8e)

E(τxx,t + ux τxx,x + uz τxx,z − 2τzxux,z − 2τxxux,x) + τxx = 0, (3.8f )

E(τzx,t + ux τzx,x + uz τzx,z − τzzux,z + ετzxuz− τxxuz,x) + τzx = aux,z. (3.8g)

Clearly, there are now only two similarity parameters in the problem, namely Re/Fr2

and E.



60 R. E. Khayat and K.-T. Kim

0.7

1.0

1.3

1.6

1.9

0 2 4 6 8 10

1/Fr = 0
       0.1
       0.2
       0.3
       0.4
       0.5

–0.10

–0.05

0

0.05

0.10

0.15

0 2 4 6 8 10

0.15

0.30

0.45

0 2 4 6 8 10

0

0.125

0.250

0.375

0.500

0 2 4 6 8 10

η
S 

(x
)

W
S 

(x
)

S S
 (x

)
N

S 
(x

)

x

Figure 9. Influence of gravity on steady-state film height, mean radial velocity component,
shear stress and normal stress, for a viscoelastic fluid with low inertia. Re= 20, Rv= 1, ε = 0.1,
De= 0.5 and 1/Fr ∈ [0, 0.5].

3.3. Influence of substrate topography

In this section, the influence of substrate dimension and topography is examined. First,
consider the influence of aspect ratio on a straight cylinder. Figure 11 displays steady-
state film, velocity and stress profiles for ε ∈ [0.1, 0.5], Re = 100, De =2.9 and Rv =1.
The viscoelastic character of the flow is most evident when the flow is two-dimensional
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Figure 10. Transient flow response for low-inertia viscoelastic film, in the presence of gravity.
Re =20, Rv= 1, ε = 0.1, De= 0.5 and 1/Fr = 0.3. The figure shows the evolution of the film
height.

(ε =0). Thus, the effect of normal-stress is most palpable for a narrow gap or large
inner cylinder radius, manifesting itself in the form of a wavy response. As ε increases
(from zero), the waviness tends to subside. This is particularly evident from the mean
radial velocity component. Generally, the flow strength decreases linearly with ε.
Overall, however, there is little effect of ε on the film thickness and stress near the
annulus exit.

So far, all results reported relate to a flow over a straight cylindrical substrate. In
order to accentuate the effect of substrate topography on film flow, step changes in
the cylindrical substrate are considered. This may at first seem to violate the thin-film
hypothesis, according to which the film free surface must be smooth, with small
slope, of O(ε2). This subsequently places a restriction on the substrate topography,
which must also be smooth since both flow-field and free-surface shape depend
directly on bottom topography. However, rapid or even discontinuous variation in
substrate topography can, under certain conditions, have little impact on free-surface
smoothness. Homsy and co-workers examined the flow over mounds and trenches
for Stokes flow and strong surface-tension, using lubrication theory for thin-film
flow (Kalliadasis et al. 2000), and a boundary-integral method for the fully two-
dimensional problem (Mazouchi & Homsy 2001). Comparison between the two
approaches led to excellent agreement despite the steep (discontinuous) variation
in substrate topography. This agreement was attributed to strong surface-tension
effects, which tend to smooth out the film free surface, thus ensuring the validity of
the thin-film hypothesis. Whether fluid elasticity plays a smoothing role, similar to
that of surface-tension, is an interesting and important question, which will shortly
be examined through the current formulation. The influence of inertia and shear
thinning/thickening have previously been examined by Khayat and co-workers. His
variation in film surface appears to preserve the same steepness in shape as the
substrate topography for a flow with inertia level (Khayat & Welke 2001), and any
level of shear thinning/thickening (Kim & Khayat 2002).

A suitable substrate profile, corresponding to a step-up and/or a step-down, is
taken from (Kalliadasis et al. 2000), which is written here in dimensionless form as

h(x) =
A

π

[
tan−1

(x − x1

δ

)
− tan−1

(x − x2

δ

)]
, (3.9)
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Figure 11. Influence of aspect ratio on steady-state film height, mean radial velocity, shear
stress and normal stress, in the absence of gravity (1/Fr= 0). Re= 100, Rv =1, De= 2.9 and
ε ∈ [0, 0.5].

where A is the amplitude of the step, δ is the slope, x1 and x2 are the locations of the
step-up and step-down, respectively. In this work, δ = 0.1. It is found that both the step-
up and step-down disturbances have a significant and different influence on the flow.
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Consider first the flow over a substrate with step-up topography (x2 → ∞). In this
case, the influence of elasticity is illustrated in figure 12 for steady film flow on a
substrate with A= 0.5 and x1 = 4 (Re =100, Rv =1 and ε = 0.1). The influence of
elasticity on the film height and shape should be compared to that of surface-tension
from figure 7 in (Mazouchi & Homsy 2001). Several observations can be made. In
contrast to the flow with dominant surface-tension effects, the presence of the step
up does not seem to affect the flow upstream. This observation is confirmed upon
comparing figures 2 and 12, particularly upon examining the level of normal stress.
In addition, elasticity has little effect on the film shape and flow until it traverses the
step. Both elasticity and surface-tension effects have a smoothing influence on the film
height (and flow field). We may then speculate that the presence of steep variation in
substrate topography tends to be smoothed out by elastic and surface-tension effects.
The influence of elasticity is essentially felt in the shear and normal stresses. When
the step is reached (x = 4), the flow experiences a localized and sharp increase in
velocity and stress magnitude, which immediately subsides downstream of the step.
This impulsive behaviour is expected since both ηS(x) and US(x) behave like h(x),
and consequently WS(x), SS(x) and NS(x) behave like dh/dx. The step causes the film
height to increase slightly with elasticity, with essentially no change in radial flow.
In contrast, both shear and normal stresses increase significantly with elasticity. The
development of sharp stress gradients is likely to cause the film to rupture in this
case. Recall from figures 2 and 5 that it is the sharpening of velocity and not stress
gradient that is the primary mechanism for film rupture. In this regard, figure 13
shows the dependence of the critical Deborah number for film rupture on substrate
amplitude and slope. Overall, a film will more probably rupture if the step slope is
steeper. For a given slope, δ, the critical Deborah number increases linearly with A

at small amplitude. At some value of A, De decreases rapidly with A, at a rate that
is essentially independent of δ.

The evolution of the film for transient flow is shown in figure 14 for De = 1. There
are roughly three flow regions at a given time. In the first region upstream of the step,
η(x, t) increases linearly with both x and t . This response is in sharp contrast with
that experienced for a straight cylinder, where the film undergoes a non-monotonic
elevation near the annulus exit (see figures 4 and 5). In the second region around
or right downstream of the step, the film height exhibits a maximum, which quickly
weakens with time, but remains localized. In the third region, far downstream, the film
tends to thicken relatively quickly towards the steady state. In this regard, observe
that the presence of the step tends to stabilize the flow as the steady state is reached
earlier than for Newtonian film (figure 4), for a highly elastic film (figure 5), and for
a film with low inertia in the presence of gravity (figure 10).

Finally, consider the flow over a rectangular step (up/down). In this case, A= 0.5,
x1 = 4 and x2 = 6, with Re =100, Rv = 1 and ε = 0.1. The steady-state profiles for film
height, radial velocity and stress are shown in figure 15. The presence of the step-up
and step-down leads to the opposite effect on the flow, which is reflected by the
presence of maxima and minima; but perhaps the most striking feature in the figure
is the presence of (kinematic) symmetry in film height and antisymmetry in velocity
between the upward and the downward flow regions, and the absence of (dynamic)
symmetry in stress. This is particularly evident from the velocity and stress profiles,
where WS (x = 4) = − WS(x = 6), and SS(x =4) � SS (x =6). The presence of strong
stress gradient in the upward region suggests that the film is likely to rupture before
it traverses the entire bump. Consequently, the values of the critical Deborah number
for film rupture reported in figure 13 are the same for the flow over a square bump.



64 R. E. Khayat and K.-T. Kim

1.0

1.2

1.4

1.6

1.8

0 2 4 6 8 10

De = 0
     0.25
     0.50
     0.75
     1.00

–2

–1

0

0 2 4 6 8 10

0.35

0.70

1.05

1.40

0 2 4 6 8 10

–1.5

–1.0

–0.5

0

0.5

0 2 4 6 8 10

η
S 

(x
)

W
S 

(x
)

S S
 (x

)
W

S 
(x

)

x

Figure 12. Influence of elasticity on steady-state film height, mean radial velocity, shear stress
and normal stress, in the absence of gravity (1/Fr= 0), for a flow over a cylindrical substrate
with a step-up topography (A=0.5, δ =0.1, x1 = 4 and x2 → ∞). Re= 100, Rv= 1, ε = 0.1 and
De ∈ [0, 1].
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Figure 14. Transient film flow over a cylindrical substrate with a step-up topography
(A = 0.5, δ = 0.1, x1 = 4 and x2 → ∞). Re= 100, Rv= 1, ε = 0.1 and De = 1.

4. Concluding remarks
The axisymmetric viscoelastic flow of a thin fluid film, emerging from an annulus,

is examined in this study. The problem is of direct relevance to the early stages of
fibre or wire coating. The Oldroyd-B type constitutive model is adopted. The effect of
substrate topography as well as the influence of fluid elasticity, inertia and gravity is
investigated. The thin-film equations are solved by expanding the flow field and stress
in terms of orthonormal modes in the radial direction, and using Galerkin projection.
The one-mode expansion is equivalent to the depth-averaging formulation. Steady
and transient flows are examined.
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Figure 15. Influence of elasticity on steady-state film height, mean radial velocity, shear stress
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It is found that Newtonian and weakly elastic steady films exhibit some swelling
near the annulus exit and a monotonically increasing film thickness. In contrast,
moderately to strongly elastic films develop waviness, which is accompanied by
strong velocity gradient and stress. The gradient steepens with elasticity, towards a
shock, which is accompanied by strong normal stress buildup, thus leading to film
rupture. Shock formation is also predicted for elastic transient flow. In contrast to
Newtonian films, elastic films tend to rupture and do not reach steady state. It is
also found that a film with both low inertia and elasticity behaves very differently
from a film with both high inertia and elasticity. A sudden change in surface slope
is predicted in the former case, which is reminiscent of phase transition. Gravity is
found to have a non-monotonic influence on the onset of waviness and rupture. Low
and high gravitational forces tend to be stabilizing for the film (figure 8). As to the
influence of substrate topography, it is found that a film flowing on a straight smaller
gap-to-radius ratio cylinder tends to be less stable. The presence of a step-up and/or
step-down on the substrate can lead to substantial stress buildup, but the effect is
not symmetric; there is relatively negligible stress buildup for a film in the step-down
region in comparison to the step-up region, despite the symmetry in flow kinematics
(figure 15). Similarly to surface-tension, elasticity tends to have a smoothing influence
on the film free surface. Consequently, for a viscoelastic fluid with negligible surface-
tension, the thin-film hypothesis is expected to hold in the presence of steep variation
in substrate topography. This is not the case for Newtonian (Khayat & Welke 2001)
and generalized Newtonian (Kim & Khayat 2002) fluids.

A number of assumptions were made in the current study, which must be relaxed
for more realistic predictions to be reached. For instance, practical polymeric fluids
tend to display shear thinning of strain hardening, along with a spectrum of relaxation
times, which have not been accounted for here. Although film breakup or rupture
is not the major focus in this study, surface-tension, which has been neglected here,
is expected to play an important role at least in the final breakup phase, even for
polymeric fluids. At the breakup stage, the local curvature of the film surface becomes
significant enough for surface-tension to cease to be negligible. Simultaneously, the
thin-film assumption ceases to be valid altogether. For further discussion on nonlinear
breakup in polymeric free-surface flows, see the review by Eggers (1997).

This work is supported by the Natural Sciences and Engineering Research Council
of Canada.

Appendix A. Scaled equations
Upon introducing the dimensionless variables from (2.6) into equations (2.1)–(2.3),

the relevant equations for the problem reduce to
ux,x +εuz + uz,z = 0, (A 1)

Re(ux,t + uxux,x + uzux,z ) = −p,x +
Re

Fr2
+ aRv(ux,zz + εux,z )

+ τxx,x + ε2−ατzx,z + ετzx, (A 2)

p,z = ε2−γ τzz,z + ε2 τzx,x +ε2−γ τzz + ε2−β τyy, (A 3)

De[ε−γ (τzz,t +uzτzz,z +uxτzz,x −2τzzuz,z) − 2τzxuz,x] + ε−γ τzz = 2 a uz,z , (A 4)

Deε−β[τyy,t +uxτyy,x +uzτyy,z −2 τyyuz] + ε−βτyy = εauz, (A 5)

De[ε−α(τxx,t + uxτxx,x + uzτxx,z − 2τzxux,z) − 2ε−2τxxux,x]+ ε−ατxx = aux,x, (A 6)

De[τzx,t + uxτzx,x + uzτzx,z − ε−γ τzzux,z − τzxux,x − τzxuz,z − ε2−ατxxuz,x] + τzx = a ux,z.

(A 7)
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Appendix B. Shape functions
In this Appendix, the shape functions are given explicitly for the first three modes.

Thus, the shape functions, φi(ξ ), for velocity are given by

φ1(ξ ) =

√
30

16
(−4ξ 2 + 4ξ + 3), φ2(ξ ) =

√
546

208
(128ξ 3 − 52ξ 2 − 44ξ + 7),

φ3(ξ ) =
3

√
286

4576
(7280ξ 4 − 2016ξ 3 − 2496ξ 2 + 368ξ + 101).

The shape functions, ψi(ξ ), for the shear stress are:

ψ1(ξ ) =
√

30
(

− ξ + 1
2

)
, ψ2(ξ ) =

√
5

2
(−8ξ 2 + 2ξ + 1),

ψ3(ξ ) =

√
7

8
(120ξ 3 − 20ξ 2 − 22ξ + 1).

Finally, the shape functions, θi(ξ ), for normal stress are:

θ1(ξ ) =

√
30

16
(−4ξ 2 − 4ξ + 3), θ2(ξ ) =

√
546

208
(−128ξ 3 − 52ξ 2 + 44ξ + 7),

θ3(ξ ) =
3

√
286

4576
(7280ξ 4 + 2016ξ 3 − 2496ξ 2 − 368ξ + 101).

Appendix C. Projected equations (N-modes)
The Galerkin projection is carried out by using expressions (2.12) and multiplying

each of equations (2.7) by the appropriate weight function. Letting A= −∆,x /∆,
B = −Σ,x/2∆ and C = − η,t/∆, the x-momentum conservation equation (2.7b) reads:

Re[Ui,t +C〈(ξ + 1/2)φiφ
′
j 〉Uj + (〈φiφjφk〉 + ε∆〈φiφ

′
j (Fkξ − Gk)〉 − 〈φiφ

′
jFk〉)UjUk,x

+{A(〈φiφ
′
j (Fk − φkξ )〉 + 〈φiφjφ

′
kξ〉) + ε∆B〈φiφ

′
jFk〉 − ε∆A〈φiφ

′
j (Fkξ − 2Gk)〉}UjUk]

=
Re

Fr2
〈φi〉 + a Rv

(
1

∆2
〈φiφ

′′
j 〉 +

ε

∆
〈φiφ

′
j 〉
)

Uj + 〈φiθj 〉Qj,x + (A〈φiθ
′
j ξ〉 + B〈φiθ

′
j 〉)Qj

+

(
1

∆
〈φiψ

′
j 〉 + ε〈φiψj 〉

)
Sj

whereas the stress equation (7b) for τxx is given by

De

[
Qi,t + C〈(ξ + 1

2
)θiθ

′
j 〉Qj + 〈θiφjθk〉UjQk,x + (ε∆〈θiθ

′
j (Fkξ − Gk)〉 − 〈θiθ

′
jFk〉

−2〈θiθjφk〉)QjUk,x + {A〈θiφjθ
′
kξ〉 +B〈θiφjθ

′
k〉}UjQk + {A(〈θiθ

′
j (Fk − φkξ )〉

−2〈θiθjφ
′
kξ〉) − B(2〈θiθjφ

′
k〉 + 〈θiθ

′
jφk〉) − ε∆A〈θiθ

′
j (Fkξ − 2Gk)〉

+ ε∆B〈θiθ
′
jFk〉}QjUk − 2

∆
〈θiφ

′
jψk〉UjSk

]
+ Qi = 0

that for τzz,

De
[
Ri,t +C

〈(
ξ + 1

2

)
θiθ

′
j

〉
Rj + 〈θiφjθk〉UjRk,x + {ε∆(〈θiθ

′
j (Fkξ − Gk)〉 − 2〈θiθjFk〉)

+ 2〈θiθjφk〉 − 〈θiθ
′
jFk〉}RjUk,x + {ε∆A(2〈θiθj (Fk − φkξ )〉 − 〈θiθ

′
j (Fkξ − 2Gk)〉)

+ ε∆B(〈θiθ
′
jFk〉 − 2〈θiθjφk〉) + A(〈θiθ

′
j (Fk − φkξ )〉 + 2〈θiθjφ

′
kξ〉) − B(〈θiθ

′
jφk〉

− 2〈θiθjφ
′
k〉)}RjUk − 2〈θiψjuz,x〉Sj

]
+ Ri = 2a{ε∆〈θiFj 〉 − 〈θiφj 〉}Uj,x

− 2a{A〈θiφ
′
j ξ〉 + B〈θiφ

′
j 〉 + ε∆A〈θi(Fj − φjξ )〉−ε∆B〈θiφj 〉}Uj }
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and the equation for τzx is

De
[
Si,t +C

〈(
ξ + 1

2

)
ψiψ

′
j

〉
Sj + 〈ψiφjψk〉UjSk,x + {ε∆(〈ψiψ

′
j (Fkξ − Gk)〉 − 〈ψiψjFk〉)

− 〈ψiψ
′
jFk〉 + 〈ψiψjφk〉}SjUk,x + {A〈ψiψ

′
j (Fk − φkξ )〉 − B〈ψiψ

′
jφk〉

+ ε∆A(〈ψiψj (Fk − φkξ )〉−〈ψiψ
′
j (Fkξ − 2Gk)〉)+ε∆B(〈ψiψ

′
jFk〉−〈ψiψjφk〉)}SjUk

− 1

∆
〈ψiφ

′
j θk〉UjRk + {A〈ψiφjψ

′
kξ〉 + B〈ψiφjψ

′
k〉}UjSk − 〈ψiθjuz,x〉Qj

]
+ Si

=
a

∆
〈ψiφ

′
j 〉Uj .

Note that

uz,x = ∆[−Fk + ε∆(Fkξ − Gk)]Uk,xx

+ ∆[2A(Fk − φkξ ) − 2Bφk − 2ε∆A(Fkξ − 2Gk) + 2ε∆BFk]Uk,x

+ ∆[(A,x −A2)(Fk − φkξ ) + (AB − B,x)φk − A2φ′
kξ − B2φ′

k − ABφ′
k(ξ + 1)

− ε∆
(
A,x −2A2

)
(Fkξ − 2Gk) + ε∆(B,x −AB)Fk + +ε∆B2φk

− ε∆A2(Fk − φkξ )ξ ]Uk.

Finally, the kinematic condition (2.9) leads to the following equation for η(x, t):

η,t (x, t) = ∆

M∑
k=1

[
ε∆

(
F +

k

2
− G+

k

)
− F +

k

]
Uk,x

−
M∑

k=1

[
∆,x

(
F +

k − φ+
k

2

)
−

∑
,x

2
φ+

k − ε∆∆,x

(
F +

k

2
−2G+

k

)
+ ε∆

∑
,x

2
F +

k −φ+
k η,x

]
Uk,

Appendix D. Constants for the depth-averaged equations
The constants in equations (3.1) are introduced in this appendix. Subscript 1 is

dropped from the shape functions.

C1 =
〈φ〉3

〈φ3〉 = 0.648, C2 =
〈φφ

′′ 〉
〈φ3〉〈φ〉 = −2.333, C3 =

〈φ〉2〈φθ〉
〈φ3〉〈θ〉 = 0.535,

C4 =
〈φ〉2

〈
φθ ′(ξ + 1

2

)〉
〈φ3〉 = −0.789, C5 =

〈φ〉〈φψ ′〉
〈φ3〉〈ψ〉 = −1.42,

C6 = 2

〈
θ 2

[
φ + φ′(ξ + 1

2

)]〉
〈θ2φ〉 = 3.407, C7 = 2

〈φ〉〈θ〉
〈
θψφ′ (ξ + 1

2

)〉
〈ψ〉 〈θ2φ〉 = 1.262,

C8 = 2
〈φ〉 〈θ〉

〈
θψφ

(
ξ + 1

2

)〉
〈ψ〉 〈θ2φ〉 = 0.699, C9 = −2

〈θ〉
〈
θ

[
φ + φ′ (ξ + 1

2

)]〉
〈θ2φ〉 = −3.111,

C10 = −2

〈
θ 2

[
φ + φ′ (ξ + 1

2

)]〉
〈θ2φ〉 = −3.407, C11 = −2

〈θ〉 〈θφ′ψ〉
〈φ〉 〈ψ〉 〈θ2φ〉 = −4.454,

C12 =
〈ψ〉 〈φ〉

〈
θψφ′ (ξ + 1

2

)〉
〈θ〉 〈ψ2φ〉 = 0.685, C13 =

〈ψ〉 〈φ〉
〈
θψφ

(
ξ + 1

2

)〉
〈θ〉 〈ψ2φ〉 = 0.379,

C14 = − 〈ψ〉 〈ψφ′θ〉
〈φ〉 〈θ〉 〈ψ2φ〉 = 3.081, C15 =

〈ψ〉 〈ψφ′〉
〈φ〉 〈ψ2φ〉 = 4.108,

C16 = −
〈
ψ

(
ξ + 1

2

)〉
= −0.571, α =

〈φ〉
〈θ2φ〉 = 1.667, β =

〈φ〉
〈ψ2φ〉 = 1.383.
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